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Abstract

We re-examine the theoretical uncertainty in the Standard Model expression for
B0- �B0 mixing. We focus on lattice calculations of the ratio �, needed to relate the
oscillation frequency of B0

s - �B
0
s mixing to the poorly known CKM element Vtd. We

replace the usual linear chiral extrapolation with one that includes the logarithm
that appears in chiral perturbation theory. We �nd a signi�cant shift in the ratio �,
from the conventional 1:15 � 0:05 to � = 1:32 � 0:10.

It is anticipated that the oscillation frequency of B0
s - �B

0
s mixing will be measured during

Run 2 of the Tevatron [1]. It is thus timely to assess the measurement's impact on tests
of the Cabibbo-Kobayashi-Maskawa (CKM) picture of avor and CP violation. The CKM
interpretation is limited by the poorly known hadronic matrix elements for B0

s $ �B0
s and

B0
d $ �B0

d transitions. In this paper we re-examine lattice calculations of these matrix elements,
focusing on the chiral extrapolation. We �nd that the range usually quoted is probably incorrect.

In the Standard Model, the theoretical expression for the oscillation frequency is

�mq =

�
G2
Fm

2
WS0

16�2mBq

�
jV �

tqVtbj2�BMq; (1)

where q 2 fd; sg, S0 is an Inami-Lim function, �B is a short-distance QCD correction, andMq

is the hadronic matrix element for B0
q $ �B0

q transitions. In Eq. (1), the parentheses consists of
accurately known quantities, and jV �

tqVtbj is the CKM factor. The hadronic matrix element

Mq = h �B0
q j[�b�(1� 5)q][�b�(1� 5)q]jB0

q i (2)

and �B depend on the renormalization scheme, but the product �BMq does not. The renor-
malization-group invariant value of the short-distance factor is �̂B = 0:55.



One should keep in mind that non-Standard physics at short distances can modify Eq. (1).
For convenience we shall couch the discussion as using �mq and the hadronic matrix element to
determine jVtqj. The resulting value of jVtqj can then be compared to other CKM determinations
to test for deviations from the Standard Model.

Mq must be computed with a non-perturbative method, such as lattice gauge theory. For
historical reasons one usually writes

Mq =
8

3
m2

Bq
f2Bq

BBq (3)

and focuses on the decay constants fBq and the bag parameters BBq . But lattice QCD gives
Mq directly (and fBq separately from h0j�b�5qjB0

q i). The separation does, however, turn out
to be useful, as we shall see below, when considering the dependence of fBq and BBq on the
masses of the light quarks.

At present the uncertainty in the matrix elements is large. A recent review [2] of lattice
calculations quotes

fBs = 230 � 30 MeV; B̂Bs = 1:34 � 0:10; (4)

fBd
= 198 � 30 MeV; B̂Bd

= 1:30 � 0:12: (5)

These estimates take into account the �rst (partially) unquenched calculations of fBq [3{7],
several quenched calculations of BBq and preliminary results suggesting that BBq changes little
when the quenched approximation is removed [6]. The raw Monte Carlo data in lattice calcu-
lations are generated with the light quark mass mq in the range 0.2{0:5 < mq=ms < 1, and
the physical matrix elements are obtained by extrapolating mq to the down quark's mass md.
This method of reaching physically light quarks is called the chiral extrapolation, and it plays
an important role in our analysis below.

The frequency for B0
d-
�B0
d mixing has been measured precisely, �md = 0:494�0:007 ps�1 [8].

With Eqs. (1) and (5) the uncertainty on jVtdj is limited to 15% by fBd

p
BBd

. The precision
on jVtdj will not improve until better (unquenched) lattice calculations have been carried out.
The frequency for B0

s -
�B0
s mixing is known to be high, �ms > 15 ps�1 [8]. But details of the

way �ms is extracted from the data mean that the �rst measurement will immediately have a
precision at the percent level [1]. Thus, it is interesting to form the ratio

�ms

�md

=

����VtsVtd

����
2 mBs

mBd

�2; (6)

where

�2 =
f2Bs

BBs

f2Bd
BBd

; (7)

and use Eq. (6) to determine jVtdj. The measurement uncertainties are (or soon will be) negli-
gible. By CKM unitarity jVtsj = jVcbj to good approximation. Thus, the error in jVtdj is

ÆjVtdj =
p
(ÆjVcbj)2 + (Æ�)2: (8)

The uncertainty in jVcbj, determined from semileptonic B decay, is also dominated by QCD,
but it is only 2{4% and relatively well understood [9{11].

The conventional wisdom, coming from several reviews of lattice B physics, is that Æ� is
small. Based on such endorsement, recent e�orts to �t a wide range of precisely measured avor
observables have used � = 1:14�0:03�0:05 [12] or � = 1:16�0:03�0:05 [13]. The second error
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bar is meant to reect the uncertainty from the quenched approximation; the �rst covers all
other sources of uncertainty in lattice calculations. Central values in this range are reproduced
by many quenched, and some unquenched, calculations.

Such a small error is, however, not universally accepted in the lattice community. Booth [14],
noting that chiral logarithms in the quenched approximation di�er strikingly from those of QCD,
predicted that � in QCD would be 0.15{0.28 larger than in the quenched approximation. Sharpe
and Zhang [15], with a similar point of view, reckoned that Æ(� � 1)=(� � 1) could be 100%.
Bernard, Blum and Soni [16] studied two di�erent ways of carrying out the analysis. Treating
fBs=fBd

and BBs=BBd
separately (as usual), they found � = 1:17 � 0:02+0:12

�0:06; treating instead

Ms=Md directly, they found � = 1:30 � 0:04+0:21
�0:15. (In Ref. [16] the second error comes from

studying the lattice spacing dependence; the di�erence is signi�cant source of concern [17].)
Finally, the JLQCD collaboration studied the e�ect of the chiral log in lattice calculations with
two light avors, �nding that the extrapolated value of � could change signi�cantly [6].

At �rst glance, Æ�=� could well be smaller than ÆfBq=fBq . � is a ratio of similar quantities,
so, in numerical lattice calculations, most of the Monte Carlo statistical uctuations do cancel.
Similarly, the short-distance normalization factor of the lattice operator also cancels. But one is
still left with a multi-scale problem, with the heavy quark massmb, the QCD scale �QCD and the
range of light quark masses from ms down to md. Because the numerator and denominator of �
are the same, except for the light quark, one may expect � to be insensitive to the heavy-quark
and QCD scales, but not to scales between ms and md.

Let us examine the uncertainties associated with each scale in more detail. Heavy-quark
corrections to � are suppressed by (ms � md)=mb � 2%. In lattice calculations, one should
also worry about discretization e�ects of the heavy quark, because mba � 1. There are several
ways to handle this problem and some debate over the best method [18]. But the various
discretizations yield consistent results for fBs=fBd

and BBs=BBd
. Thus, we conclude that

errors from the short distance scales are under control.
Next let us consider �QCD. Implicit in the quenched approximation (also called the valence

approximation) is that the omitted sea quarks are compensated by a shift in the bare gauge
coupling [19]. This treats light-quark vacuum polarization in a dielectric approximation. Such
approximations can be accurate when looking at a narrow range of scales. In the case at hand,
that means that ratios of decay constants or bag parameters could be accurate as long as all
quark masses are not too di�erent. Thus, it is plausible that the quenched approximation accu-
rately determines the slope of �, viewed as a function of r = mq=ms, when r � 1. Unquenched
calculations [3{7] do not contradict this expectation. These calculations, and the justi�cation
of the quenched approximation [19], suggest that the scale �QCD is also under control.

That leaves us with contributions to � from the long distances between 1=ms and 1=md.
Here the quenched approximation is known to break down [14,15], and it is not obvious that
the quenching error could be as small as 5%. One must take a careful look at how the chiral
extrapolation is done, and consider what methods of extrapolation are reliable.

The correct framework to discuss the long-distance behavior of QCD, and the chiral extrap-
olation in particular, is chiral perturbation theory. We neglect 1=m corrections and write

p
mBqfBq = � [1 +�fq] ; (9)

BBq = B [1 + �Bq] ; (10)

where � and B are independent of both heavy and light quark masses, and �fq and �Bq

denote the (one-loop) contribution of the light meson cloud. The \chiral logarithms" reside in
�fq and �Bq.
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Neglecting isospin breaking, the one-loop corrections to the decay constants are [20,21,14,15]

�fs = �1 + 3g2

(4�f)2
�
m2

K ln
�
m2

K=�
2
�
+ 1

3
m2

� ln
�
m2

�=�
2
��

+
�
m2

K + 1
2
m2

�

�
f1(�) +

�
m2

K � 1
2
m2

�

�
f2(�); (11)

�fd = �1 + 3g2

(4�f)2
�
3
4
m2

� ln
�
m2

�=�
2
�
+ 1

2
m2

K ln
�
m2

K=�
2
�
+ 1

12
m2

� ln
�
m2

�=�
2
��

+
�
m2

K + 1
2
m2

�

�
f1(�) +

1
2
m2

�f2(�); (12)

and to the bag parameters

�Bs = �1� 3g2

(4�f)2
2
3
m2

� ln
�
m2

�=�
2
�
+
�
m2

K + 1
2
m2

�

�
B1(�) +

�
m2

K � 1
2
m2

�

�
B2(�); (13)

�Bd = �1� 3g2

(4�f)2
�
1
2
m2

� ln
�
m2

�=�
2
�
+ 1

6
m2

� ln
�
m2

�=�
2
��

+
�
m2

K + 1
2
m2

�

�
B1(�) +

1
2
m2

�B2(�); (14)

where f and g are (the chiral limit of) the light pseudoscalar decay constant and B-B�-�
coupling. The \low-energy" constants fi(�) and Bi(�) encode QCD dynamics from distances
shorter than ��1, whereas the logarithms are long-distance properties of QCD, constrained by
chiral symmetry. The dependence on � cancels in the total.

It is convenient to look separately at the fB and
p
BB factors in �. The chiral logarithm

in the
p
BB factor could be small because it is multiplied by 1 � 3g2. On the other hand,

the chiral logarithm in the fB factor could be signi�cant, because it is multiplied by 1 + 3g2.
Consequently, we focus on

�f = fBs=fBd
(15)

and study its chiral extrapolation. Our strategy is to use lattice calculations as an (indirect) way
of determining the low-energy constants, and then we reconstitute �f . Repeating our analysis
for the chiral extrapolation of �B =

p
BBs=BBd

veri�es that �B has a small e�ect.
Combining Eqs. (11) and (12), the �rst non-trivial order in the chiral expansion is

�f � 1 = (m2
K �m2

�)f2(�)�
1 + 3g2

(4�f)2
�
1
2
m2

K ln(m2
K=�

2) + 1
4
m2

� ln(m
2
�=�

2)� 3
4
m2

� ln(m
2
�=�

2)
�
:

(16)
All lattice estimates of � are obtained not at physical light meson masses, but by chiral extrap-
olation. Therefore, we use Gell-Mann{Okubo formulae to replace the meson masses with

m2
� = m2

qq; (17)

m2
K = (m2

ss +m2
qq)=2; (18)

m2
� = (2m2

ss +m2
qq)=3: (19)

Varying the light quark mass changes m2
qq / mq. Lattice calculations typically take m2

qq not
too di�erent from m2

ss, so we write m
2
qq = rm2

ss. Then

�f (r)� 1 = m2
ss(1� r)

�
1
2
f2(�)� 1 + 3g2

(4�f)2

�
5

12
ln(m2

ss=�
2) + l(r)

��
; (20)

where

l(r) =
1

1� r

�
1 + r

4
ln

�
1 + r

2

�
+
2 + r

12
ln

�
2 + r

3

�
� 3r

4
ln(r)

�
: (21)
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The function �(r) = (1 � r)l(r) contains the chiral logarithms. It is plotted in Fig. 1. The
curvature over 0:5 � r � 1:0 is too small to be resolved when there are percent-level statistical
uncertainties on �f . But once r � 1, which is appropriate for the down quark with rd �
1=25, the curvature required by the chiral log has a signi�cant e�ect. Fig. 2 shows this e�ect,
comparing the conventional linear chiral extrapolation with Eq. (20), for f2(�) in the range
coming from Eq. (23), below.

When � is calculated in lattice gauge theory, the range of r is restricted to r . 1 but r 6� 1.
Usually, it is �t to a straight line

�f (r)� 1 = (1� r)Sf (22)

and similarly �2B(r)� 1 = (1� r)SB. Usually one assumes this linear extrapolation holds down
to the chiral limit, quoting � = [1 + (1� rd)Sf ][1 +

1
2
(1� rd)SB ]. The chiral log says, however,

that this procedure is not trustworthy. It has been employed because there was, until recently,
no independent reliable estimate of the B-B�-� coupling g2 in the coeÆcient of the chiral log.

The CLEO collaboration has recently measured the width of the D� meson, which yields a
value for the D-D�-� coupling [22]. Heavy-quark symmetry suggests that the B-B�-� coupling
is nearly the same. On this basis, we shall set g2 = 0:35, although below we allow for 20%
deviations. With g2 = 0:35, the chiral log in �B is truly small, because 1 � 3g2 = �0:05, but
the chiral log in �f is multiplied with 1 + 3g2 = +2:05.

With this handle on g2, we can interpret the lattice results for Sf as a calculation of f2(�).
We assume the linear �t given by Eq. (22) makes sense around r = r0 � 1, even though we do
not trust it when r � 1. So, at r0 we set the right-hand side of Eq. (20) equal to the right-hand
side of Eq. (22) and �nd

m2
ss
1
2
f2(�) = Sf +m2

ss

1 + 3g2

(4�f)2

�
5

12
ln(m2

ss=�
2) + l(r0)

�
: (23)

Then, inserting this result into Eq. (20)

�f (r)� 1 = (1� r)

�
Sf +m2

ss

1 + 3g2

(4�f)2
[l(r0)� l(r)]

�
: (24)

To evaluate the right-hand side, one needs estimates of f , g2 and Sf . We use f = 130 MeV
and g2 = 0:35. In addition, we take [2]

(1� rd)Sf = 0:15 � 0:05 (25)

which brackets many quenched calculations (for which there is a lot of experience and repro-
ducibility) as well as less well-developed unquenched calculations.1

Once we have made the Ansatz to use the slope from lattice QCD to determine the low-
energy constant via Eq. (23), another source of uncertainty is the choice of r0. Fig. 3 shows
the result from Eq. (24) for the physical value �f (rd), as a function of r0 from 0 to 1.5. (The
lower end 0 is not natural, but recovers the conventional result; the upper end 1.5 is where this
order of chiral perturbation theory is less trustworthy.) Since the typical range of �ts leading
to Eq. (25) is 0:5 < r < 1:0, we choose r0 in this range and use Fig. 3 to obtain

�f = 1:32 � 0:08: (26)

1In fact, some \unquenched" calculations only have nf = 2.
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χ
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−0.03

0
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Figure 1: Plot of the chiral logarithm �(r) as the mass ratio r = m2
qq=m

2
ss = mq=ms is varied,

compared with a straight line �t for 0:5 � r � 1:0. The di�erence between the curve and the
�t is shown in the inset.

0.0 0.5 1.0 1.5
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2
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f
2
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Figure 2: Plot of �f against r for several values of the low-energy constant: f2(1 GeV) =
0:2; 0:5; 0:8 GeV�2. Also shown is the linear extrapolation with �f (rd) = 1:15 � 0:05.
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0.0 0.5 1.0 1.5
r
0

1.00

1.25

1.50

ξ
f

S
f
 = 0.15

S
f
 = 0.12

S
f
 = 0.18

S
f
 = 0.10

S
f
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Figure 3: Plot of �f from Eq. (24), with (1 � rd)Sf = 0:15 � 0:05, m2
ss = 2(m2

K �m2
�), and

r = rd = m2
�=m

2
ss, as a function of r0.

With separation scale � = 1 GeV, �f�1 receives nearly equal contributions from the low-energy
constant (0.159) and the chiral log (0.165).2

We have carried out a similar analysis for �B and also allowed for a �20% range on g2.
(See the appendix for details.) The chiral logs in �f and �B pull in opposite directions, so the
resulting � = �f�B is insensitive to g2:

� = 1:32 � 0:10; (27)

which is quite di�erent from the range usually used in CKM �ts, although it agrees with
qualitative discussions of chiral logs [14,15], a direct analysis of Ms=Md [16], and chiral log
�ts to preliminary unquenched calculations [6]. The shift in central value from 1.15 to 1.32 can
be thought of as a correction to the quenched approximation: mature unquenched calculations
will certainly see the curvature required by the chiral log.

Because our result is so di�erent than the conventional one, let us stress the di�erences in
methodology. Usually � is obtained via a linear chiral extrapolation, although chiral log �ts
have been tried in Ref. [6]. We have relied completely on the functional form predicted by chiral
perturbation theory. It is diÆcult to determine the coeÆcient of the chiral logs directly from
the lattice calculation. We have circumvented this obstacle by using the D� width [22], which,
with heavy-quark symmetry, implies g2 = 0:35. The uncertainty in Eq. (27) is larger than in
many other papers, mostly because we have assigned �0:05 instead of �0:03 uncertainty to the
lattice calculations. On the other hand, we have also not done a complete error analysis: for
example, we have neglected uncertainties from higher orders in the chiral expansion.

2Loops with excited B��

q mesons are expected to contribute signi�cantly to �f [23,24], but the ensuing r

dependence is well described by linear extrapolation, so it is accurate to lump them into (1� r)f2(�).
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One could easily reduce the theoretical uncertainty in B0- �B0 mixing by carrying out lattice
calculations designed to determine the low-energy constants in Eqs. (11){(14). If one takes
closely-spaced values of the light quark mass, even if close to the strange mass, one can compute
the derivative d�=dr. If one is willing to take g2 from experiment, these derivatives give f2(�)
and B2(�), and one can proceed to determine � for physically light quark masses. The same
procedure could be applied to fBq and BBq although now one must also compute f1(�) and
B1(�), and also cope with further low-energy constants in the 1=mb corrections [25,26]. Chiral
extrapolations with chiral logs may well change fBq from the estimates in Eqs. (4) and (5) in
the same way they changed �f .

From a (lattice) purist's point of view it may be unsatisfactory to take g2 from experiment.
In the long run it will, however, be possible to solidify our knowledge of g2 (in the B system)
through lattice calculations and other applications of chiral perturbation theory to B physics.
To relate the very precise measurements to the CKMmatrix, the combination of phenomenology
for g2 and lattice calculation for the low-energy constant is very satisfactory, especially since we
�nd that � varies by less than 2% when g2 is varied by 20%. Fig. 4 shows how the combination
of sin 2� and �ms=�md work together to constrain the apex of the unitarity triangle. We
take sin 2� = 0:79 � 0:10 from averaging CDF [27], BaBar [28] and Belle [29] measurements.
For illustration we take �ms = 20 ps�1, and compare � = 1:15 � 0:05 (conventional wisdom)
with � = 1:32 � 0:05 [Eq. (27) with error halved]. With a larger value of � the mixing side is
longer, scaling like �=

p
�ms. By the same token, our result suggests that the Standard-Model

prediction for �ms (16{19 ps�1 [12]) should be increased, perhaps by 25{35%.

Acknowledgments: We would like to thank Claude Bernard, Gustavo Burdman, Shoji Hashi-
moto, Aida El-Khadra, Zoltan Ligeti, Vittorio Lubicz, Ulrich Nierste, and Norikazu Yamada
for discussions related to this work.
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Figure 4: Sketch of constraints on the apex of the unitarity triangle with sin 2� = 0:79 � 0:10,
�ms = 20 ps�1 and � = 1:32 � 0:05 or 1:15 � 0:05.
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Appendix: Analysis including �B and varying g2

Let �2B = BBs=BBd
, with linear chiral extrapolation

�2B(r)� 1 = (1� r)SB: (28)

Then, eliminating B2(�) in the same way as f2(�) in �f ,

�2B(r)� 1 = (1� r)

�
SB +m2

ss

1� 3g2

(4�f)2
[lB(r0)� lB(r)]

�
; (29)

where

lB(r) =
1

1� r

�
2 + r

6
ln

�
2 + r

3

�
� r

2
ln(r)

�
: (30)

To evaluate the right-hand side, we take [2]

SB = 0:00 � 0:05: (31)

Then we �nd �B = 0:998 � 0:025.
In the main analysis, we have used g2 = 0:35, which assumes that the B-B�-� and D-D�-�

are the same. Repeating the analysis with g2 = 0:20 and 0:50 we �nd the results in Table 1.
Although the chiral extrapolation of �B is no longer completely insigni�cant, and �f changes a
little, the result for � is very stable.

Table 1: Comparison of chiral extrapolations for �f , �B and � for three values of the B-B�-�
coupling g2 = 0:20, 0.35, 0.50.

g2 �f �B �

0.20 1.29�0.08 1.01�0.03 1.30�0.09
0.35 1.32�0.08 1.00�0.02 1.32�0.09
0.50 1.36�0.09 0.98�0.02 1.34�0.09
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